R/tidyMS_R6_TransitionCorrelations.R
rank_peptide_by_intensity.Rd
ranks precursor - peptide by intensity.
rank_peptide_by_intensity(pdata, config)
data.frame
bb <- prolfqua::sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
res <- remove_large_QValues(bb$data, bb$config)
res <- rank_peptide_by_intensity(res,bb$config)
#> Joining with `by = join_by(protein_Id, peptide_Id)`
#> Columns added : srm_meanInt srm_meanIntRank
X <-res |> dplyr::select(c(bb$config$table$hierarchy_keys(),
srm_meanInt, srm_meanIntRank)) |> dplyr::distinct()
X |> dplyr::arrange(!!!rlang::syms(c(bb$config$table$hierarchy_keys()[1], "srm_meanIntRank" )))
#> # A tibble: 28 × 4
#> protein_Id peptide_Id srm_meanInt srm_meanIntRank
#> <chr> <chr> <dbl> <int>
#> 1 0EfVhX~0087 ahQLlQY7 24.9 1
#> 2 0EfVhX~0087 ITLb4x1q 23.2 2
#> 3 0EfVhX~0087 dJkdz7so 20.7 3
#> 4 7cbcrd~5725 D5dQ4nKk 23.5 1
#> 5 9VUkAq~4703 eIC06D7g 21.1 1
#> 6 BEJI92~5282 qQ1GK8Un 23.2 1
#> 7 BEJI92~5282 HBkZvdhT 18.0 2
#> 8 CGzoYe~2147 mjHSHhoe 28.3 1
#> 9 DoWup2~5896 KVUnZ6oZ 20.5 1
#> 10 Fl4JiV~8625 wajUl0YS 25.9 1
#> # ℹ 18 more rows