compute group mean by LOD
compute group mean by LOD
weight lod by nr of NA's $(LOD * nrNas + meanAbundance *nrObs)/(nrMeasured)$
data
data
config
config
prob
quantile of groups with one observed value to estimate LOD
stats
data.frame with group statistics
weighted
should we weight the LOD
get_LOD()
determine limit of detection computes quantile of abundances in groups with a single observation
Contrasts <- c("group.b-a" = "group_A - group_B", "group.a-ctrl" = "group_A - group_Ctrl")
dd <- prolfqua::sim_lfq_data_protein_config(Nprot = 100,weight_missing = 2)
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
mh <- prolfqua::MissingHelpers$new(dd$data, dd$config, prob = 0.8,weighted = TRUE)
xx <- mh$get_stats()
#> completing cases
xx <- mh$get_LOD()
xx <- mh$impute_weighted_lod()
xx <- mh$impute_lod()
xx <- mh$get_poolvar()
bb <- mh$get_contrast_estimates(Contrasts)
#> group.b-a=group_A - group_B
#> group.a-ctrl=group_A - group_Ctrl
#> group.b-a=group_A - group_B
#> group.a-ctrl=group_A - group_Ctrl
#> group.b-a=group_A - group_B
#> group.a-ctrl=group_A - group_Ctrl
mh$get_contrasts(Contrasts)
#> group.b-a=group_A - group_B
#> group.a-ctrl=group_A - group_Ctrl
#> group.b-a=group_A - group_B
#> group.a-ctrl=group_A - group_Ctrl
#> group.b-a=group_A - group_B
#> group.a-ctrl=group_A - group_Ctrl
#> # A tibble: 200 × 18
#> protein_Id meanAbundanceImp_group_1 meanAbundanceImp_group_2 estimate
#> <chr> <dbl> <dbl> <dbl>
#> 1 0EfVhX~3967 22.0 19.2 2.84
#> 2 0YSKpy~2865 19.5 20.0 0
#> 3 0m5WN4~6025 19.5 23.1 -3.59
#> 4 3QLHfm~8938 22.2 21.8 0.365
#> 5 3QYop0~7543 22.5 22.1 0.433
#> 6 76k03k~7094 25.3 24.3 1.02
#> 7 7QuTub~1867 20.4 24.6 -4.12
#> 8 7cbcrd~7351 26.7 23.6 3.17
#> 9 7soopj~5352 20.1 20.0 0.113
#> 10 7zeekV~7127 20.6 20.8 -0.196
#> # ℹ 190 more rows
#> # ℹ 14 more variables: group_1_name <chr>, group_2_name <chr>, contrast <chr>,
#> # avgAbd <dbl>, indic <dbl>, nrMeasured_group_1 <int>,
#> # nrMeasured_group_2 <int>, df <dbl>, sd <dbl>, sdT <dbl>, statistic <dbl>,
#> # p.value <dbl>, conf.low <dbl>, conf.high <dbl>
dd <- prolfqua::sim_lfq_data_2Factor_config(Nprot = 100,weight_missing = 0.1)
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
Contrasts <- c("c1" = "TreatmentA - TreatmentB",
"C2" = "BackgroundX- BackgroundZ",
"c3" = "`TreatmentA:BackgroundX` - `TreatmentA:BackgroundZ`",
"c4" = "`TreatmentB:BackgroundX` - `TreatmentB:BackgroundZ`"
)
mh <- prolfqua::MissingHelpers$new(dd$data, dd$config, prob = 0.8,weighted = TRUE)
mh$get_stats()$interaction |> table()
#> completing cases
#> completing cases
#> completing cases
#>
#> TreatmentA:BackgroundX TreatmentB:BackgroundX TreatmentA:BackgroundZ
#> 100 100 100
#> TreatmentB:BackgroundZ TreatmentA TreatmentB
#> 100 100 100
#> BackgroundX BackgroundZ
#> 100 100
mh$get_contrast_estimates(Contrasts)
#> c1=TreatmentA - TreatmentB
#> C2=BackgroundX- BackgroundZ
#> c3=`TreatmentA:BackgroundX` - `TreatmentA:BackgroundZ`
#> c4=`TreatmentB:BackgroundX` - `TreatmentB:BackgroundZ`
#> c1=TreatmentA - TreatmentB
#> C2=BackgroundX- BackgroundZ
#> c3=`TreatmentA:BackgroundX` - `TreatmentA:BackgroundZ`
#> c4=`TreatmentB:BackgroundX` - `TreatmentB:BackgroundZ`
#> c1=TreatmentA - TreatmentB
#> C2=BackgroundX- BackgroundZ
#> c3=`TreatmentA:BackgroundX` - `TreatmentA:BackgroundZ`
#> c4=`TreatmentB:BackgroundX` - `TreatmentB:BackgroundZ`
#> # A tibble: 400 × 11
#> protein_Id meanAbundanceImp_group_1 meanAbundanceImp_group_2 estimate
#> <chr> <dbl> <dbl> <dbl>
#> 1 0EfVhX~3967 21.1 20.5 0.608
#> 2 0YSKpy~2865 18.3 17.1 1.15
#> 3 0m5WN4~6025 18.1 22.2 -4.09
#> 4 3QLHfm~8938 23.2 22.5 0.712
#> 5 3QYop0~7543 23.3 23.7 -0.310
#> 6 76k03k~7094 24.3 24.6 -0.343
#> 7 7QuTub~1867 21.6 25.7 -4.14
#> 8 7cbcrd~7351 25.6 24.8 0.804
#> 9 7soopj~5352 19.7 21.6 -1.90
#> 10 7zeekV~7127 21.1 20.3 0.720
#> # ℹ 390 more rows
#> # ℹ 7 more variables: group_1_name <chr>, group_2_name <chr>, contrast <chr>,
#> # avgAbd <dbl>, indic <dbl>, nrMeasured_group_1 <int>,
#> # nrMeasured_group_2 <int>