R/tidyMS_R6_TransitionCorrelations.R
scale_with_subset.Rd
this should reduce the overall variance.
scale_with_subset(
data,
subset,
config,
preserveMean = FALSE,
get_scales = TRUE
)
the whole dataset
a subset of the dataset
configuration
return a list of transformed data and the scaling parameters
default FASE - sets mean to zero
Other preprocessing:
INTERNAL_FUNCTIONS_BY_FAMILY
,
apply_to_response_matrix()
,
filter_proteins_by_peptide_count()
,
get_robscales()
,
normalize_log2_robscale()
,
robust_scale()
,
scale_with_subset_by_factors()
bb <-sim_lfq_data_peptide_config(Nprot = 100)
#> creating sampleName from fileName column
#> Warning: no nr_children column specified in the data, adding column nr_children and setting to 1.
#> completing cases
conf <- bb$config$clone(deep=TRUE)
sample_analysis <- bb$data
res <- transform_work_intensity(sample_analysis, conf, log2)
#> Column added : log2_abundance
s1 <- get_robscales(res, conf)
res <- scale_with_subset(res, res, conf)
#> Warning: Expected 2 pieces. Additional pieces discarded in 4200 rows [1, 2, 3, 4, 5, 6,
#> 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
#> Joining with `by = join_by(sampleName, protein_Id, peptide_Id)`
s2 <- get_robscales(res$data, conf)
stopifnot(abs(mean(s1$mads) - mean(s2$mads)) < 1e-6)