Summarize LFQData

Summarize LFQData

Public fields

lfq

LFQData

Methods


Method new()

initialize

Usage

LFQDataSummariser$new(lfqdata)

Arguments

lfqdata

LFQData


Method hierarchy_counts()

summarize hierarchy

Usage

LFQDataSummariser$hierarchy_counts()


Method hierarchy_counts_sample()

number of elements at each level in every sample

Usage

LFQDataSummariser$hierarchy_counts_sample(
  value = c("wide", "long"),
  nr_children = 1
)

Arguments

value

wide - wide format, long - long format, plot - ggplot

nr_children

get summary for 1,2 or more number of children


Method plot_hierarchy_counts_sample()

barplot showing number of elements at each level in every sample

Usage

LFQDataSummariser$plot_hierarchy_counts_sample(nr_children = 1)

Arguments

nr_children

get summary for 1,2 or more number of children

value

wide - wide format, long - long format, plot - ggplot


Method interaction_missing_stats()

missing per condition and protein

Usage

LFQDataSummariser$interaction_missing_stats()


Method upset_interaction_missing_stats()

upset plot with missing information per protein and condition

Usage

LFQDataSummariser$upset_interaction_missing_stats(tr = 2)

Arguments

tr

if less than tr observations in condition then missing


Method missingness_per_group()

missing stats per condition

Usage

LFQDataSummariser$missingness_per_group()


Method missingness_per_group_cumsum()

missing stats per condition as cumulative sum

Usage

LFQDataSummariser$missingness_per_group_cumsum()


Method plot_missingness_per_group()

barplot with number of features with 1,2, etc missing in condition

Usage

LFQDataSummariser$plot_missingness_per_group()

Returns

ggplot


Method plot_missingness_per_group_cumsum()

barplot with cumulative sum of features with 1,2, etc missing in condition

Usage

LFQDataSummariser$plot_missingness_per_group_cumsum()

Returns

ggplot


Method percentage_abundance()

Does roll up to highest hierarchy and Computes the percent abundance of proteins overall and within each group

Usage

LFQDataSummariser$percentage_abundance()

Returns

data frame


Method clone()

The objects of this class are cloneable with this method.

Usage

LFQDataSummariser$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

istar <- prolfqua::sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done

data <- istar$data
lfqdata <- LFQData$new(data, istar$config)
sum <- lfqdata$get_Summariser()
sum
#> <LFQDataSummariser>
#>   Public:
#>     clone: function (deep = FALSE) 
#>     hierarchy_counts: function () 
#>     hierarchy_counts_sample: function (value = c("wide", "long"), nr_children = 1) 
#>     initialize: function (lfqdata) 
#>     interaction_missing_stats: function () 
#>     lfq: LFQData, R6
#>     missingness_per_group: function () 
#>     missingness_per_group_cumsum: function () 
#>     percentage_abundance: function () 
#>     plot_hierarchy_counts_sample: function (nr_children = 1) 
#>     plot_missingness_per_group: function () 
#>     plot_missingness_per_group_cumsum: function () 
#>     upset_interaction_missing_stats: function (tr = 2) 
sum$hierarchy_counts()
#> # A tibble: 1 × 3
#>   isotopeLabel protein_Id peptide_Id
#>   <chr>             <int>      <int>
#> 1 light                10         28
sum$hierarchy_counts_sample("wide")
#> # A tibble: 12 × 4
#> # Groups:   isotopeLabel [1]
#>    isotopeLabel sampleName protein_Id peptide_Id
#>    <chr>        <chr>           <int>      <int>
#>  1 light        A_V1               10         23
#>  2 light        A_V2               10         26
#>  3 light        A_V3               10         25
#>  4 light        A_V4               10         23
#>  5 light        B_V1                8         26
#>  6 light        B_V2                9         26
#>  7 light        B_V3               10         27
#>  8 light        B_V4               10         26
#>  9 light        Ctrl_V1            10         24
#> 10 light        Ctrl_V2            10         25
#> 11 light        Ctrl_V3             9         24
#> 12 light        Ctrl_V4            10         25
sum$hierarchy_counts_sample("long")
#> # A tibble: 24 × 4
#> # Groups:   isotopeLabel [1]
#>    isotopeLabel sampleName key           nr
#>    <chr>        <chr>      <chr>      <int>
#>  1 light        A_V1       protein_Id    10
#>  2 light        A_V2       protein_Id    10
#>  3 light        A_V3       protein_Id    10
#>  4 light        A_V4       protein_Id    10
#>  5 light        B_V1       protein_Id     8
#>  6 light        B_V2       protein_Id     9
#>  7 light        B_V3       protein_Id    10
#>  8 light        B_V4       protein_Id    10
#>  9 light        Ctrl_V1    protein_Id    10
#> 10 light        Ctrl_V2    protein_Id    10
#> # ℹ 14 more rows
sum$plot_hierarchy_counts_sample()

sum$plot_hierarchy_counts_sample()

tmp <- sum$interaction_missing_stats()
#> Warning: >>>> deprecated! <<<< 
#> 
#>           use summarize_stats_factors instead.
#> completing cases
#> completing cases

sum$missingness_per_group()
#> Warning: >>>> deprecated! <<<< 
#> 
#>           use summarize_stats_factors instead.
#> completing cases
#> # A tibble: 3 × 7
#> # Groups:   isotopeLabel, group_ [3]
#>   isotopeLabel group_ nrReplicates   `0`   `1`   `2`   `3`
#>   <chr>        <chr>         <int> <int> <int> <int> <int>
#> 1 light        A                 4    19     5     2     2
#> 2 light        B                 4    21     7    NA    NA
#> 3 light        Ctrl              4    17     8     3    NA
sum$missingness_per_group_cumsum()
#> Warning: >>>> deprecated! <<<< 
#> 
#>           use summarize_stats_factors instead.
#> completing cases
#> isotopeLabel ~ group_
#> # A tibble: 3 × 7
#> # Groups:   isotopeLabel, group_ [3]
#>   isotopeLabel group_ nrReplicates   `0`   `1`   `2`   `3`
#>   <chr>        <chr>         <int> <int> <int> <int> <int>
#> 1 light        A                 4    19    24    26    28
#> 2 light        B                 4    21    28    NA    NA
#> 3 light        Ctrl              4    17    25    28    NA
sum$plot_missingness_per_group()
#> Warning: >>>> deprecated! <<<< 
#> 
#>           use summarize_stats_factors instead.
#> completing cases

sum$plot_missingness_per_group_cumsum()
#> Warning: >>>> deprecated! <<<< 
#> 
#>           use summarize_stats_factors instead.
#> completing cases
#> isotopeLabel ~ group_

sum$upset_interaction_missing_stats()
#> Warning: >>>> deprecated! <<<< 
#> 
#>           use summarize_stats_factors instead.
#> completing cases

sum$percentage_abundance()
#> completing cases
#> completing cases
#> # A tibble: 112 × 16
#> # Groups:   interaction [4]
#>    interaction protein_Id  peptide_Id group_ nrReplicates nrMeasured nrNAs
#>    <chr>       <chr>       <chr>      <chr>         <int>      <int> <int>
#>  1 group_A     Fl4JiV~8625 fv2Ck8hz   A                 4          1     3
#>  2 group_A     0EfVhX~0087 dJkdz7so   A                 4          2     2
#>  3 group_A     SGIVBl~5782 gyTlZxnW   A                 4          1     3
#>  4 group_A     HvIpHG~9079 opjydeWJ   A                 4          3     1
#>  5 group_A     9VUkAq~4703 eIC06D7g   A                 4          4     0
#>  6 group_A     BEJI92~5282 HBkZvdhT   A                 4          2     2
#>  7 group_A     0EfVhX~0087 ITLb4x1q   A                 4          3     1
#>  8 group_A     HvIpHG~9079 lWjJPCzZ   A                 4          3     1
#>  9 group_A     Fl4JiV~8625 GsUIOl6Q   A                 4          3     1
#> 10 group_A     Fl4JiV~8625 KpyeEoiy   A                 4          4     0
#> # ℹ 102 more rows
#> # ℹ 9 more variables: sd <dbl>, var <dbl>, meanAbundance <dbl>,
#> #   medianAbundance <dbl>, CV <dbl>, id <int>, abundance_percent <dbl>,
#> #   abundance_percent_cumulative <dbl>, percent_prot <dbl>