LFQData R6 class

LFQData R6 class

Public fields

config

AnalysisConfiguration

data

data.frame or tibble matching AnalysisConfiguration.

is_pep

todo

prefix

e.g. "peptide_", "protein_", "compound_"

Methods


Method new()

initialize

Usage

LFQData$new(data, config, is_pep = TRUE, prefix = "ms_", setup = FALSE)

Arguments

data

data.frame

config

configuration

is_pep

todo

prefix

will be use as output prefix

setup

is data setup needed, default = FALSE, if TRUE, calls setup_analysis on data first.


Method get_copy()

get deep copy

Usage

LFQData$get_copy()


Method get_sample()

samples subset of data

Usage

LFQData$get_sample(size = 100, seed = NULL)

Arguments

size

size of subset default 100

seed

set seed


Method get_subset()

get subset of data

Usage

LFQData$get_subset(x)

Arguments

x

data frame with columns containing subject_Id


Method subject_Id()

get subject ID columns

Usage

LFQData$subject_Id()


Method is_transformed()

is data transformed

Usage

LFQData$is_transformed(is_transformed)

Arguments

is_transformed

logical

Returns

logical


Method remove_small_intensities()

some software is reporting NA's as 0, you must remove it from your data

Usage

LFQData$remove_small_intensities(threshold = 4)

Arguments

threshold

default 4.

Returns

self


Method filter_proteins_by_peptide_count()

remove proteins with less than X peptides

Usage

LFQData$filter_proteins_by_peptide_count()

Returns

self


Method omit_NA()

Omit NA from intensities per hierarchy (e.g. protein or peptide), idea is to use it for normalization For instance if a peptide has a missing value in more then nrNA of the samples within a condition it will be removed

Usage

LFQData$omit_NA(nrNA = 0, factorDepth = NULL)

Arguments

nrNA

number of NA values

factorDepth

you control for nrNA per condition or experiment etc. e.g. factorDepth = 0 then per experiment

Returns

LFQData with NA omitted.


Method complete_cases()

some software is reporting NA's as 0, you must remove it from your data

Usage

LFQData$complete_cases()

Arguments

threshold

default 4.

Returns

self


Method to_wide()

converts the data to wide

Usage

LFQData$to_wide(as.matrix = FALSE, value = c("response", "nr_children"))

Arguments

as.matrix

return as data.frame or matrix

value

either response or nr chidren

Returns

list with data, annotation, and configuration


Method factors()

Annotation table

Usage

LFQData$factors()

Returns

data.frame


Method hierarchy()

Hierarchy table

Usage

LFQData$hierarchy()


Method response()

name of response variable

Usage

LFQData$response()

Returns

data.frame


Method rename_response()

new name of response variable

Usage

LFQData$rename_response(newname = "Intensity")

Arguments

newname

default Intensity


Method hierarchy_counts()

number of elements at each level

Usage

LFQData$hierarchy_counts()


Method summarize_hierarchy()

e.g. number of peptides per protein etc

Usage

LFQData$summarize_hierarchy()

Returns

data.frame


Method get_Plotter()

get Plotter

Usage

LFQData$get_Plotter()

Returns

LFQDataPlotter


Method get_Writer()

get Writer

Usage

LFQData$get_Writer(format = "xlsx")

Arguments

format

array of formats to write to supported are xlsx, csv and html

Returns

LFQDataPlotter


Method get_Summariser()

get Summariser

Usage

LFQData$get_Summariser()

Returns

LFQDataSummarizer


Method get_Stats()

Get LFQDataStats. For more details see LFQDataStats.

Usage

LFQData$get_Stats(stats = c("everything", "interaction", "all"))

Arguments

stats

default interaction, computes statistics within interaction.

Returns

LFQDataStats


Method get_Transformer()

get Stats

Usage

LFQData$get_Transformer()

Returns

LFQDataTransformer


Method get_Aggregator()

get Aggregator

Usage

LFQData$get_Aggregator()

Returns

LFQDataAggregator


Method filter_difference()

get difference of self with other if other is subset of self

Usage

LFQData$filter_difference(other)

Arguments

other

a filtered LFQData set

Details

Use to compare filtering results obtained from self, e.g. which proteins and peptides were removed (other)

Returns

LFQData


Method clone()

The objects of this class are cloneable with this method.

Usage

LFQData$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples


istar <- sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> Warning: no nr_children column specified in the data, adding column nr_children and setting to 1.
#> completing cases
#LFQData$debug("omit_NA")
lfqdata <- LFQData$new(istar$data, istar$config)
lfqdata$filter_proteins_by_peptide_count()
#> removing proteins with less than: 2 peptpides
#> Column added : nr_peptide_Id_IN_protein_Id
tmp <- lfqdata$to_wide()
testthat::expect_equal(nrow(tmp$data) , nrow(tmp$rowdata))
testthat::expect_equal(ncol(tmp$data) , nrow(tmp$annotation) + ncol(tmp$rowdata))

stopifnot("data.frame" %in% class(tmp$data))
tmp <- lfqdata$to_wide(as.matrix = TRUE)
stopifnot("matrix" %in% class(tmp$data))
stopifnot(lfqdata$is_transformed()==FALSE)
lfqdata$summarize_hierarchy()
#> # A tibble: 6 × 3
#>   protein_Id  isotopeLabel_n peptide_Id_n
#>   <chr>                <int>        <int>
#> 1 0EfVhX~0087              1            3
#> 2 BEJI92~5282              1            2
#> 3 Fl4JiV~8625              1            4
#> 4 HvIpHG~9079              1            2
#> 5 JcKVfU~9653              1            7
#> 6 SGIVBl~5782              1            6

# filter for missing values

f1 <- lfqdata$omit_NA(nrNA = 0)
#> [1] "group_"
#> completing cases
#> Joining with `by = join_by(protein_Id, peptide_Id)`
stopifnot(f1$hierarchy_counts() <= lfqdata$hierarchy_counts())

f2 <- lfqdata$omit_NA(factorDepth = 0)
#> NULL
#> completing cases
#> Joining with `by = join_by(protein_Id, peptide_Id)`
stopifnot(f2$hierarchy_counts() <= lfqdata$hierarchy_counts())

lfqdata$response()
#> [1] "abundance"
lfqdata$rename_response("peptide.intensity")
lfqdata$response()
#> [1] "peptide.intensity"
stopifnot("LFQData" %in% class(lfqdata$get_copy()))
stopifnot("LFQDataTransformer" %in% class(lfqdata$get_Transformer()))
stopifnot("LFQDataStats" %in% class(lfqdata$get_Stats()))
#> [1] "group_"
#> completing cases
#> NULL
#> completing cases
stopifnot("LFQDataSummariser" %in% class(lfqdata$get_Summariser()))
stopifnot("LFQDataPlotter" %in% class(lfqdata$get_Plotter()))
stopifnot("LFQDataWriter" %in% class(lfqdata$get_Writer()))
stopifnot("LFQDataAggregator" %in% class(lfqdata$get_Aggregator()))

lfqdata2 <- lfqdata$get_copy()
lfqdata2$data <- lfqdata2$data[1:100,]
res <- lfqdata$filter_difference(lfqdata2)
stopifnot(nrow(res$data) == nrow(lfqdata$data) - 100)

tmp <- lfqdata$get_sample(5, seed = 4)
#> Sampling 5protein_Id
#> Joining with `by = join_by(protein_Id)`
stopifnot(nrow(tmp$hierarchy()) == 5)

lw <- lfqdata$get_Writer()
stopifnot(names(lw$get_wide()) %in% c("data", "annotation"))

stopifnot("data.frame" %in% class(lw$get_long()))