R/tidyMS_stats.R
lfq_power_t_test_quantiles.Rd
Compute theoretical sample sizes from factor level standard deviations
lfq_power_t_test_quantiles(
pdata,
config,
delta = 1,
power = 0.8,
sig.level = 0.05,
probs = seq(0.5, 0.9, by = 0.1)
)
data.frame
AnalysisConfiguration
effect size you are interested in
of test
P-Value
bb1 <- prolfqua::sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> Warning: no nr_children column specified in the data, adding column nr_children and setting to 1.
#> completing cases
config <- bb1$config
data2 <- bb1$data
res <- lfq_power_t_test_quantiles(data2, config)
#> Warning: Intensities are not transformed yet.
#> [1] "group_"
#> completing cases
res$summary
#> quantile probs sd FC=2
#> 1 50% 0.5 0.8606778 13
#> 2 60% 0.6 1.0041074 17
#> 3 70% 0.7 1.0808016 20
#> 4 80% 0.8 1.2819172 27
#> 5 90% 0.9 1.4827429 36
stats_res <- summarize_stats(data2, config)
#> [1] "group_"
#> completing cases
res <- lfq_power_t_test_quantiles(data2, config, delta = 2)
#> Warning: Intensities are not transformed yet.
#> [1] "group_"
#> completing cases
res <- lfq_power_t_test_quantiles(data2, config, delta = c(0.5,1,2))
#> Warning: Intensities are not transformed yet.
#> [1] "group_"
#> completing cases