R/tidyMS_stats.R
lfq_power_t_test_proteins.Rd
Compute theoretical sample sizes from factor level standard deviations
lfq_power_t_test_proteins(
stats_res,
delta = c(0.59, 1, 2),
power = 0.8,
sig.level = 0.05,
min.n = 1.5
)
data.frame `summarize_stats` output
effect size you are interested in
of test
smallest n to determine
P-Value
bb1 <- prolfqua::sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> Warning: no nr_children column specified in the data, adding column nr_children and setting to 1.
#> completing cases
ldata <- LFQData$new(bb1$data, bb1$config)
stats_res <- summarize_stats(ldata$data, ldata$config)
#> [1] "group_"
#> completing cases
bb <- lfq_power_t_test_proteins(stats_res)