following the documentation here: https://online.stat.psu.edu/stat500/lesson/7/7.3/7.3.1/7.3.1.1
data.frame
Other stats:
INTERNAL_FUNCTIONS_BY_FAMILY
,
lfq_power_t_test_proteins()
,
lfq_power_t_test_quantiles()
,
lfq_power_t_test_quantiles_V2()
,
plot_stat_density()
,
plot_stat_density_median()
,
plot_stat_violin()
,
plot_stat_violin_median()
,
plot_stdv_vs_mean()
,
summarize_stats()
Other stats:
INTERNAL_FUNCTIONS_BY_FAMILY
,
lfq_power_t_test_proteins()
,
lfq_power_t_test_quantiles()
,
lfq_power_t_test_quantiles_V2()
,
plot_stat_density()
,
plot_stat_density_median()
,
plot_stat_violin()
,
plot_stat_violin_median()
,
plot_stdv_vs_mean()
,
summarize_stats()
x <- data.frame(nrMeasured =c(1,2,2), var = c(3,4,4), meanAbundance = c(3,3,3))
x <- data.frame(nrMeasured =c(1,2,1,1), var = c(NA, 0.0370, NA, NA), meanAbundance = c(-1.94,-1.46,-1.87,-1.45) )
prolfqua:::pooled_V2(na.omit(x))
#> n.groups n df sd var sdT mean
#> 1 1 2 1 0.1923538 0.037 0.1923538 -1.46
prolfqua:::pooled_V1(na.omit(x))
#> n.groups n df sd sdT var mean
#> 1 1 2 1 0.1923538 0.1923538 0.037 -1.46
x <- x[1,, drop=FALSE]
x
#> nrMeasured var meanAbundance
#> 1 1 NA -1.94
na.omit(x)
#> [1] nrMeasured var meanAbundance
#> <0 rows> (or 0-length row.names)
prolfqua:::pooled_V2(na.omit(x))
#> n.groups n df sd var sdT mean
#> 1 0 0 0 0 0 NaN NaN
x <- data.frame(nrMeasured =c(1,2,2), var = c(3,4,4), meanAbundance = c(3,3,3))
x <- data.frame(nrMeasured =c(1,2,1,1), var = c(NA, 0.0370, NA, NA), meanAbundance = c(-1.94,-1.46,-1.87,-1.45) )
compute_pooled(x)
#> n.groups n df sd sdT var mean meanAll nrMeasured
#> 1 1 2 1 0.1923538 0.1923538 0.037 -1.46 -1.636 5
compute_pooled(x, method = "V2")
#> n.groups n df sd var sdT mean meanAll nrMeasured
#> 1 1 2 1 0.1923538 0.037 0.1923538 -1.46 -1.636 5
#debug(compute_pooled)
y <- data.frame(dilution.=c("a","b","c"),
nrReplicates = c(4,4,4), nrMeasured = c(0,0,1), sd =c(NA,NA,NA),
var = c(NA,NA,NA),meanAbundance = c(NaN,NaN,NaN))
compute_pooled(y)
#> n.groups n df sd sdT var mean meanAll nrMeasured
#> 1 0 0 0 NaN NaN NaN NaN NaN 1
yb <- y |> dplyr::filter(nrMeasured > 1)
bb <- prolfqua::sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
config <- bb$config
data <- bb$data
res1 <- summarize_stats(data, config)
#> completing cases
pv <- poolvar(res1, config)
stopifnot(nrow(pv) == nrow(res1)/3)