Fishers exact test on a datframe
contrasts_fisher_exact(
xb,
observedA = "observedA",
observedB = "observedB",
samplesA = "samplesA",
samplesB = "samplesB"
)
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
Nprot <- 1000
condA <- 8
condB <- 8
observedA <- sample(0:8, Nprot, replace = TRUE)
observedB <- sample(0:8, Nprot, replace = TRUE)
xb <- data.frame(observedA = observedA, observedB = observedB)
xb$samplesA <- condA
xb$samplesB <- condB
proteinID <- unique(stringi::stri_rand_strings(Nprot + 20,5))[1:Nprot]
xb$proteinID <- proteinID
xlater <- xb
res <- contrasts_fisher_exact(xlater)