plot contrasts
plot contrasts
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
Other plotting:
INTERNAL_FUNCTIONS_BY_FAMILY
,
UpSet_interaction_missing_stats()
,
UpSet_missing_stats()
,
medpolish_estimate_df()
,
missigness_histogram()
,
missingness_per_condition()
,
missingness_per_condition_cumsum()
,
plot_NA_heatmap()
,
plot_estimate()
,
plot_heatmap()
,
plot_heatmap_cor()
,
plot_heatmap_cor_iheatmap()
,
plot_hierarchies_add_quantline()
,
plot_hierarchies_boxplot_df()
,
plot_hierarchies_line()
,
plot_hierarchies_line_df()
,
plot_intensity_distribution_violin()
,
plot_pca()
,
plot_raster()
,
plot_sample_correlation()
,
plot_screeplot()
contrastDF
data frame with contrasts
modelName
of column with model name
subject_Id
hierarchy key columns
prefix
default Contrasts - used to generate file names
diff
column with fold change differences
contrast
column with contrasts names, default "contrast"
volcano_spec
volcano plot specification
score_spec
score plot specification
histogram_spec
plot specification
fcthresh
fold change threshold
avg.abundance
name of column containing avg abundance values.
protein_annot
protein annotation
new()
create Crontrast_Plotter
ContrastsPlotter$new(
contrastDF,
subject_Id,
volcano = list(list(score = "FDR", thresh = 0.1)),
histogram = list(list(score = "p.value", xlim = c(0, 1, 0.05)), list(score = "FDR",
xlim = c(0, 1, 0.05))),
score = list(list(score = "statistic", thresh = NULL)),
fcthresh = 1,
modelName = "modelName",
diff = "diff",
contrast = "contrast",
avg.abundance = "avgAbd",
protein_annot = NULL
)
contrastDF
frame with contrast data
subject_Id
columns containing subject Identifier
volcano
which score to plot and which ablines to add.
histogram
which scores to plot and which range (x) should be shown.
score
score parameters
fcthresh
default 1 (log2 FC threshold)
modelName
name of column with model names
diff
fold change (difference) diff column
contrast
contrast column
avg.abundance
name of column with average abundance
protein_annot
add protein annotation (optional)
volcano()
volcano plots (fold change vs FDR)
ContrastsPlotter$volcano(
colour,
legend = TRUE,
scales = c("fixed", "free", "free_x", "free_y"),
min_score = 1e-04
)
volcano_plotly()
plotly volcano plots
ContrastsPlotter$volcano_plotly(
colour,
legend = TRUE,
scales = c("fixed", "free", "free_x", "free_y"),
min_score = 1e-04
)
ma_plot()
ma plot
MA plot displays the effect size estimate as a function of the mean protein intensity across groups. Each dot represents an observed protein. Red horizontal lines represent the fold-change threshold.
Sometimes measured effects sizes (differences between samples groups) are biased by the signal intensity (here protein abundance). Such systematic effects can be explored using MA-plots.
ma_plotly()
ma plotly
score_plot()
plot a score against the log2 fc e.g. t-statistic
score_plotly()
plot a score against the log2 fc e.g. t-statistic
istar <- sim_lfq_data_peptide_config(Nprot = 100)
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
modelName <- "Model"
modelFunction <-
strategy_lmer("abundance ~ group_ + (1 | peptide_Id) + (1|sample)",
model_name = modelName)
pepIntensity <- istar$data
config <- istar$config
mod <- build_model(
pepIntensity,
modelFunction,
modelName = modelName,
subject_Id = config$table$hierarchy_keys_depth())
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 22 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#> pb)`.
#> ℹ In group 4: `protein_Id = "3QLHfm~8938"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 21 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
Contr <- c("group_A_vs_Ctrl" = "group_A - group_Ctrl",
"group_B_vs_Ctrl" = "group_B - group_Ctrl"
)
contrast <- prolfqua::Contrasts$new(mod,
Contr)
contr <- contrast$get_contrasts()
#> determine linear functions:
#> compute contrasts:
#> computing contrasts.
#> Joining with `by = join_by(protein_Id, contrast)`
cp <- ContrastsPlotter$new(contr,
contrast$subject_Id,
volcano = list(list(score = "FDR", thresh = 0.1)),
histogram = list(list(score = "p.value", xlim = c(0,1,0.05)),
list(score = "FDR", xlim = c(0,1,0.05))),
score =list(list(score = "statistic", thresh = 5))
)
stopifnot("plotly" %in% class(cp$volcano_plotly()$FDR))
stopifnot("ggplot" %in% class(cp$score_plot(legend=FALSE)$statistic))
p <- cp$histogram()
stopifnot("ggplot" %in% class(p$FDR))
stopifnot("ggplot" %in% class(p$p.value))
p <- cp$histogram_estimate()
stopifnot("ggplot" %in% class(p))
res <- cp$volcano()
stopifnot("ggplot" %in% class(res$FDR))
respltly <- cp$volcano_plotly()
stopifnot("plotly" %in% class(respltly$FDR))
stopifnot("ggplot" %in% class(cp$ma_plot()))
stopifnot("plotly" %in% class(cp$ma_plotly(rank=TRUE)))
res <- cp$barplot_threshold()
stopifnot("ggplot" %in% class(res$FDR$plot))
stopifnot("ggplot" %in% class(cp$histogram_diff()))