The strategy contains functions to fit the model but also compute the contrasts etc.
The strategy contains functions to fit the model but also compute the contrasts etc.
strategy_lmer(
modelstr,
model_name = "Model",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
strategy_lm(
modelstr,
model_name = "Model",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
strategy_rlm(
modelstr,
model_name = "Model",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
strategy_glm(
modelstr,
model_name = "Model",
test = "Chisq",
family = stats::binomial,
multiplier = 1,
offset = 1,
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
model formula
name of model
columns to report
either binomial or quasibinomial
for tuning default is 1.
list with model function, contrast computation function etc.
list with model function, contrast computation function etc.
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
istar <- prolfqua::sim_lfq_data_peptide_config(Nprot = 10, with_missing = FALSE)
#> creating sampleName from fileName column
#> Warning: no nr_children column specified in the data, adding column nr_children and setting to 1.
#> completing cases
istar <- prolfqua::LFQData$new(istar$data,istar$config)
istar$data <- istar$data |> dplyr::group_by(protein_Id) |>
dplyr::mutate(abundanceC = abundance - mean(abundance)) |> dplyr::ungroup()
istar$factors()
#> # A tibble: 12 × 3
#> sample sampleName group_
#> <chr> <chr> <chr>
#> 1 A_V1 A_V1 A
#> 2 A_V2 A_V2 A
#> 3 A_V3 A_V3 A
#> 4 A_V4 A_V4 A
#> 5 B_V1 B_V1 B
#> 6 B_V2 B_V2 B
#> 7 B_V3 B_V3 B
#> 8 B_V4 B_V4 B
#> 9 Ctrl_V1 Ctrl_V1 Ctrl
#> 10 Ctrl_V2 Ctrl_V2 Ctrl
#> 11 Ctrl_V3 Ctrl_V3 Ctrl
#> 12 Ctrl_V4 Ctrl_V4 Ctrl
modelFunction <- strategy_lmer("abundanceC ~ group_ + (1|peptide_Id) ", model_name = "random_example")
mod <- build_model(
istar,
modelFunction)
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#> pb)`.
#> ℹ In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
sum(mod$modelDF$exists_lmer)
#> [1] 6
sum(mod$modelDF$isSingular, na.rm=TRUE)
#> [1] 0
tmp <- strategy_lm("Intensity ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
#> Intensity ~ condition
#> <environment: 0x30d5d2e10>
tmp$isSingular
#> function(m){
#> anyNA <- any(is.na(coefficients(m)))
#> if (anyNA) {
#> return(TRUE)
#> } else {
#> if (df.residual(m) >= 2) {
#> return(FALSE)
#> }
#> return(TRUE)
#> }
#> }
#> <environment: namespace:prolfqua>
tmp <- strategy_rlm("Intensity ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
#> Intensity ~ condition
#> <environment: 0x30d0ec0e0>
tmp$isSingular
#> function(m){
#> anyNA <- any(is.na(coefficients(m)))
#> if (anyNA) {
#> return(TRUE)
#> } else {
#> if (df.residual(m) >= 2) {
#> return(FALSE)
#> }
#> return(TRUE)
#> }
#> }
#> <environment: namespace:prolfqua>
tmp <- strategy_glm("Intensity ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
#> Intensity ~ condition
#> <environment: 0x30c9c57e8>
tmp$isSingular
#> function(m){
#> anyNA <- any(is.na(coefficients(m)))
#> if (anyNA) {
#> return(TRUE)
#> } else {
#> if (df.residual(m) >= 2) {
#> return(FALSE)
#> }
#> return(TRUE)
#> }
#> }
#> <environment: namespace:prolfqua>