build dataframe with models for testing
sim_build_models_lm(
model = c("parallel2", "parallel3", "factors", "interaction"),
Nprot = 10,
with_missing = TRUE,
weight_missing = 1
)
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
modi <- sim_build_models_lm(model = "interaction", weight_missing = 1)
#> creating sampleName from fileName column
#> completing cases
#> Joining with `by = join_by(protein_Id)`
stopifnot(dim(modi$modelDF) == c(10,9))
mod2 <- sim_build_models_lm(model = "parallel2", weight_missing = 1)
#> creating sampleName from fileName column
#> completing cases
#> Joining with `by = join_by(protein_Id)`
mod2$modelDF$linear_model[[1]]
#>
#> Call:
#> lm(formula = formula, data = x)
#>
#> Coefficients:
#> (Intercept) TreatmentB
#> 20.321 4.158
#>
mod3 <- sim_build_models_lm(model = "parallel3", weight_missing = 1)
#> creating sampleName from fileName column
#> completing cases
#> Joining with `by = join_by(protein_Id)`
modf <- sim_build_models_lm(model = "factors", weight_missing = 1)
#> creating sampleName from fileName column
#> completing cases
#> Joining with `by = join_by(protein_Id)`