build lmer model from simulated data

sim_build_models_lmer(
  model = c("parallel2", "parallel3", "factors", "interaction"),
  Nprot = 10,
  with_missing = TRUE,
  weight_missing = 1
)

Examples

undebug(sim_build_models_lmer)
#> Warning: argument is not being debugged
modi <- sim_build_models_lmer(model = "interaction", weight_missing = 1)
#> Warning: Unknown or uninitialised column: `nr_peptides`.
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#>   pb)`.
#>  In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#>  Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
stopifnot(sum(modi$modelDF$exists_lmer) == 6)
mod2 <- sim_build_models_lmer(model = "parallel2", weight_missing = 1)
#> Warning: Unknown or uninitialised column: `nr_peptides`.
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#>   pb)`.
#>  In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#>  Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
stopifnot(sum(mod2$modelDF$exists_lmer) == 6)
mod4 <- sim_build_models_lmer(model = "parallel3", weight_missing = 1)
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#>   pb)`.
#>  In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#>  Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
stopifnot(sum(mod4$modelDF$exists_lmer) == 6)
modf <- sim_build_models_lmer(model = "factors", weight_missing = 1)
#> Warning: Unknown or uninitialised column: `nr_peptides`.
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#>   pb)`.
#>  In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#>  Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
stopifnot(sum(modf$modelDF$exists_lmer) == 6)