R6 class representing modelling result
R6 class representing modelling result
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
prolfqua::ModelInterface
-> Model
modelDF
data.frame with modelling data and model.
modelName
name of model
subject_Id
e.g. protein_Id
model_strategy
function to create the models
anova_df
function to compute anova
p.adjust
function to adjust p-values
new()
initialize
Model$new(
modelDF,
model_strategy,
modelName,
subject_Id = "protein_Id",
p.adjust = prolfqua::adjust_p_values
)
modelDF
dataframe with modelling results
model_strategy
model_strategy see strategy_lmer
modelName
name of model
subject_Id
subject column name
p.adjust
method to adjust p-values
write_coefficients()
writes model coefficients to file
path
folder to write to
format
default xlsx lfq_write_table
anova_histogram()
histogram of ANOVA results
Model$anova_histogram(what = c("p.value", "FDR"))
istar <- prolfqua_data('data_ionstar')$normalized()
istar$config <- old2new(istar$config)
istar_data <- dplyr::filter(istar$data ,protein_Id %in% sample(protein_Id, 100))
modelName <- "f_condtion_r_peptide"
formula_randomPeptide <-
strategy_lmer("transformedIntensity ~ dilution. + (1 | peptide_Id)",
model_name = modelName)
pepIntensity <- istar_data
config <- istar$config
config$table$hierarchy_keys_depth()
#> [1] "protein_Id"
mod <- prolfqua::build_model(
pepIntensity,
formula_randomPeptide,
modelName = modelName,
subject_Id = config$table$hierarchy_keys_depth())
#> boundary (singular) fit: see help('isSingular')
#> Joining with `by = join_by(protein_Id)`
mod$modelDF
#> # A tibble: 68 × 9
#> # Groups: protein_Id [68]
#> protein_Id data linear_model exists_lmer isSingular df.residual sigma
#> <chr> <list> <list> <lgl> <lgl> <dbl> <dbl>
#> 1 sp|P21589|5NT… <tibble> <lmrMdLmT> TRUE FALSE 276 0.298
#> 2 sp|Q9NZM3|ITS… <tibble> <lmrMdLmT> TRUE FALSE 18 0.250
#> 3 sp|O43660|PLR… <tibble> <lmrMdLmT> TRUE FALSE 79 0.367
#> 4 sp|P0A908|MIP… <tibble> <lmrMdLmT> TRUE FALSE 26 0.312
#> 5 sp|P62857|RS2… <tibble> <lmrMdLmT> TRUE FALSE 53 0.695
#> 6 sp|Q9Y3A5|SBD… <tibble> <lmrMdLmT> TRUE FALSE 172 0.287
#> 7 sp|Q13838|DX3… <tibble> <lmrMdLmT> TRUE FALSE 199 0.305
#> 8 sp|O00148|DX3… <tibble> <lmrMdLmT> TRUE FALSE 178 0.338
#> 9 sp|P25789|PSA… <tibble> <lmrMdLmT> TRUE FALSE 142 0.435
#> 10 sp|P41252|SYI… <tibble> <lmrMdLmT> TRUE FALSE 508 0.299
#> # ℹ 58 more rows
#> # ℹ 2 more variables: nrcoef <int>, nrcoeff_not_NA <int>
aovtable <- mod$get_anova()
mod$get_coefficients()
#> # A tibble: 340 × 9
#> # Groups: protein_Id [68]
#> protein_Id isSingular nrcoef factor Estimate Std..Error df t.value
#> <chr> <lgl> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 sp|P21589|5NTD_H… FALSE 5 (Inte… 0.883 0.358 15.3 2.47
#> 2 sp|P21589|5NTD_H… FALSE 5 dilut… 0.0975 0.0559 263. 1.74
#> 3 sp|P21589|5NTD_H… FALSE 5 dilut… 0.0700 0.0557 263. 1.26
#> 4 sp|P21589|5NTD_H… FALSE 5 dilut… -0.0232 0.0564 263. -0.412
#> 5 sp|P21589|5NTD_H… FALSE 5 dilut… 0.127 0.0557 263. 2.27
#> 6 sp|Q9NZM3|ITSN2_… FALSE 5 (Inte… -1.60 0.124 2.71 -12.9
#> 7 sp|Q9NZM3|ITSN2_… FALSE 5 dilut… -0.299 0.139 19.0 -2.15
#> 8 sp|Q9NZM3|ITSN2_… FALSE 5 dilut… -0.201 0.146 19.0 -1.38
#> 9 sp|Q9NZM3|ITSN2_… FALSE 5 dilut… -0.250 0.206 19.8 -1.21
#> 10 sp|Q9NZM3|ITSN2_… FALSE 5 dilut… 0.0464 0.146 19.0 0.318
#> # ℹ 330 more rows
#> # ℹ 1 more variable: Pr...t.. <dbl>
mod$coef_histogram()
#> $plot
#>
#> $name
#> [1] "Coef_Histogram_f_condtion_r_peptide.pdf"
#>
mod$coef_volcano()
#> $plot
#>
#> $name
#> [1] "Coef_VolcanoPlot_f_condtion_r_peptide.pdf"
#>
mod$coef_pairs()
#> $plot
#> # A tibble: 68 × 6
#> subject_Id `(Intercept)` dilution.b dilution.c dilution.d dilution.e
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sp|P21589|5NTD_HUM… 0.883 0.0975 0.0700 -0.0232 0.127
#> 2 sp|Q9NZM3|ITSN2_HU… -1.60 -0.299 -0.201 -0.250 0.0464
#> 3 sp|O43660|PLRG1_HU… -1.15 0.0266 -0.0128 0.0302 0.00359
#> 4 sp|P0A908|MIPA_ECO… -1.55 0.997 0.974 1.78 1.79
#> 5 sp|P62857|RS28_HUM… 2.39 -0.325 -0.570 -0.0864 -0.155
#> 6 sp|Q9Y3A5|SBDS_HUM… -0.130 -0.0601 -0.108 -0.0289 -0.106
#> 7 sp|Q13838|DX39B_HU… 1.89 0.00453 0.0587 0.0638 0.0208
#> 8 sp|O00148|DX39A_HU… 1.34 0.0791 0.146 0.0983 -0.0395
#> 9 sp|P25789|PSA4_HUM… 0.955 -0.0780 -0.0389 -0.188 -0.153
#> 10 sp|P41252|SYIC_HUM… -0.146 0.0179 -0.00398 -0.0451 -0.0704
#> # ℹ 58 more rows
#>
#> $name
#> [1] "Coef_Pairsplot_f_condtion_r_peptide.pdf"
#>
mod$anova_histogram()
#> $plot
#>
#> $name
#> [1] "Anova_p.values_f_condtion_r_peptide.pdf"
#>