compute contrasts for full models
my_contrast(
m,
linfct,
coef = coefficients(m),
Sigma.hat = vcov(m),
confint = 0.95
)
linear model generated using lm
linear function
use default
which confidence interval to determine
default
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
m <- sim_make_model_lm( "factors")
#> creating sampleName from fileName column
#> completing cases
#> Joining with `by = join_by(protein_Id)`
linfct <- linfct_from_model(m)$linfct_factors
my_glht(m, linfct)
#> # A tibble: 4 × 10
#> contrast null.value estimate std.error statistic adj.p.value conf.low
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 BackgroundX 0 18.6 0.551 33.8 4.62e-14 17.4
#> 2 BackgroundZ 0 18.2 0.551 33.0 6.29e-14 17.0
#> 3 TreatmentA 0 18.8 0.551 34.1 4.26e-14 17.6
#> 4 TreatmentB 0 18.1 0.551 32.8 6.83e-14 16.9
#> # ℹ 3 more variables: conf.high <dbl>, df <int>, sigma <dbl>
my_contrast(m, linfct, confint = 0.95)
#> lhs sigma df estimate std.error statistic p.value
#> BackgroundX BackgroundX 1.557675 13 18.63959 0.5507212 33.84577 4.612815e-14
#> BackgroundZ BackgroundZ 1.557675 13 18.19440 0.5507212 33.03740 6.294815e-14
#> TreatmentA TreatmentA 1.557675 13 18.75377 0.5507212 34.05311 4.264271e-14
#> TreatmentB TreatmentB 1.557675 13 18.08021 0.5507212 32.83007 6.825487e-14
#> conf.low conf.high
#> BackgroundX 17.44983 19.82935
#> BackgroundZ 17.00464 19.38416
#> TreatmentA 17.56401 19.94353
#> TreatmentB 16.89045 19.26998
my_contrast(m, linfct, confint = 0.99)
#> lhs sigma df estimate std.error statistic p.value
#> BackgroundX BackgroundX 1.557675 13 18.63959 0.5507212 33.84577 4.612815e-14
#> BackgroundZ BackgroundZ 1.557675 13 18.19440 0.5507212 33.03740 6.294815e-14
#> TreatmentA TreatmentA 1.557675 13 18.75377 0.5507212 34.05311 4.264271e-14
#> TreatmentB TreatmentB 1.557675 13 18.08021 0.5507212 32.83007 6.825487e-14
#> conf.low conf.high
#> BackgroundX 16.98066 20.29851
#> BackgroundZ 16.53547 19.85332
#> TreatmentA 17.09485 20.41269
#> TreatmentB 16.42129 19.73914