retrieve complete models.

get_complete_model_fit(modelProteinF)

Examples

x <- sim_build_models_lmer(model = "factors", Nprot = 10)
#> creating sampleName from fileName column
#> Warning: no nr_children column specified in the data, adding column nr_children and setting to 1.
#> completing cases
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#>   pb)`.
#>  In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#>  Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
cfits <- get_complete_model_fit(x$modelDF)
stopifnot(nrow(cfits) == 6)