retrieve complete models.
get_complete_model_fit(modelProteinF)
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
x <- sim_build_models_lmer(model = "factors", Nprot = 10)
#> Warning: Unknown or uninitialised column: `nr_peptides`.
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> boundary (singular) fit: see help('isSingular')
#> Warning: There were 4 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `linear_model = purrr::map(data, model_strategy$model_fun, pb =
#> pb)`.
#> ℹ In group 2: `protein_Id = "7cbcrd~5725"`.
#> Caused by warning in `value[[3L]]()`:
#> ! WARN :Error: grouping factors must have > 1 sampled level
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(protein_Id)`
cfits <- get_complete_model_fit(x$modelDF)
stopifnot(nrow(cfits) == 6)