R/tidyMS_aggregation.R
medpolish_estimate_df.Rd
Median polish estimates of e.g. protein abundances for entire data.frame
medpolish_estimate_df(pdata, response, feature, sampleName)
data.frame
Other aggregation:
INTERNAL_FUNCTIONS_BY_FAMILY
,
aggregate_intensity_topN()
,
estimate_intensity()
,
intensity_summary_by_hkeys()
,
medpolish_estimate()
,
medpolish_estimate_dfconfig()
,
medpolish_protein_estimates()
,
plot_estimate()
,
plot_hierarchies_add_quantline()
,
plot_hierarchies_line()
,
plot_hierarchies_line_df()
,
rlm_estimate()
,
rlm_estimate_dfconfig()
Other plotting:
ContrastsPlotter
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
UpSet_interaction_missing_stats()
,
UpSet_missing_stats()
,
missigness_histogram()
,
missingness_per_condition()
,
missingness_per_condition_cumsum()
,
plot_NA_heatmap()
,
plot_estimate()
,
plot_heatmap()
,
plot_heatmap_cor()
,
plot_heatmap_cor_iheatmap()
,
plot_hierarchies_add_quantline()
,
plot_hierarchies_boxplot_df()
,
plot_hierarchies_line()
,
plot_hierarchies_line_df()
,
plot_intensity_distribution_violin()
,
plot_pca()
,
plot_raster()
,
plot_sample_correlation()
,
plot_screeplot()
bb <- prolfqua_data('data_ionstar')$filtered()
#> Column added : nr_peptide_Id_IN_protein_Id
bb$config <- old2new(bb$config)
stopifnot(nrow(bb$data) == 25780)
conf <- bb$config
data <- bb$data
conf$table$hierarchyDepth = 1
xnested <- data |>
dplyr::group_by_at(conf$table$hierarchy_keys_depth()) |> tidyr::nest()
feature <- base::setdiff(conf$table$hierarchy_keys(),
conf$table$hierarchy_keys_depth())
x <- xnested$data[[1]]
bb <- medpolish_estimate_df(x,
response = conf$table$get_response(),
feature = feature,
sampleName = conf$table$sampleName)
prolfqua:::.reestablish_condition(x,bb, conf)
#> # A tibble: 20 × 6
#> sampleName dilution. run_Id raw.file isotope medpolish
#> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 b~02 b 02 b03_02_150304_human_ecoli_b_3u… light 53281919.
#> 2 c~03 c 03 b03_03_150304_human_ecoli_c_3u… light 53108622.
#> 3 d~04 d 04 b03_04_150304_human_ecoli_d_3u… light 51768575
#> 4 e~05 e 05 b03_05_150304_human_ecoli_e_3u… light 48923212.
#> 5 e~06 e 06 b03_06_150304_human_ecoli_e_3u… light 46757962.
#> 6 d~07 d 07 b03_07_150304_human_ecoli_d_3u… light 43139562.
#> 7 c~08 c 08 b03_08_150304_human_ecoli_c_3u… light 49301991.
#> 8 b~09 b 09 b03_09_150304_human_ecoli_b_3u… light 46173388.
#> 9 a~10 a 10 b03_10_150304_human_ecoli_a_3u… light 47789438.
#> 10 a~11 a 11 b03_11_150304_human_ecoli_a_3u… light 61505569.
#> 11 b~12 b 12 b03_12_150304_human_ecoli_b_3u… light 57534412.
#> 12 c~13 c 13 b03_13_150304_human_ecoli_c_3u… light 50100838.
#> 13 d~14 d 14 b03_14_150304_human_ecoli_d_3u… light 58970725
#> 14 e~15 e 15 b03_15_150304_human_ecoli_e_3u… light 61280338.
#> 15 e~16 e 16 b03_16_150304_human_ecoli_e_3u… light 56780612.
#> 16 d~17 d 17 b03_17_150304_human_ecoli_d_3u… light 59887225
#> 17 c~18 c 18 b03_18_150304_human_ecoli_c_3u… light 57788409.
#> 18 b~19 b 19 b03_19_150304_human_ecoli_b_3u… light 60040838.
#> 19 a~20 a 20 b03_20_150304_human_ecoli_a_3u… light 57032150
#> 20 a~21 a 21 b03_21_150304_human_ecoli_a_3u… light 55993412.