R/tidyMS_aggregation.R
plot_hierarchies_line_df.Rd
Generates peptide level plots for all proteins
plot_hierarchies_line_df(pdata, config, show.legend = FALSE)
Other aggregation:
INTERNAL_FUNCTIONS_BY_FAMILY
,
aggregate_intensity_topN()
,
estimate_intensity()
,
intensity_summary_by_hkeys()
,
medpolish_estimate()
,
medpolish_estimate_df()
,
medpolish_estimate_dfconfig()
,
medpolish_protein_estimates()
,
plot_estimate()
,
plot_hierarchies_add_quantline()
,
plot_hierarchies_line()
,
rlm_estimate()
,
rlm_estimate_dfconfig()
Other plotting:
ContrastsPlotter
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
UpSet_interaction_missing_stats()
,
UpSet_missing_stats()
,
medpolish_estimate_df()
,
missigness_histogram()
,
missingness_per_condition()
,
missingness_per_condition_cumsum()
,
plot_NA_heatmap()
,
plot_estimate()
,
plot_heatmap()
,
plot_heatmap_cor()
,
plot_heatmap_cor_iheatmap()
,
plot_hierarchies_add_quantline()
,
plot_hierarchies_boxplot_df()
,
plot_hierarchies_line()
,
plot_intensity_distribution_violin()
,
plot_pca()
,
plot_raster()
,
plot_sample_correlation()
,
plot_screeplot()
istar <- sim_lfq_data_peptide_config()
#> creating sampleName from fileName column
#> completing cases
#> completing cases done
#> setup done
istar$config$table$is_response_transformed <- FALSE
res <- plot_hierarchies_line_df(istar$data, istar$config)
res[[1]]
#> Warning: Removed 7 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).
istar$config$table$is_response_transformed <- TRUE
res <- plot_hierarchies_line_df(istar$data, istar$config)
res[[2]]
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#TODO make it work for other hiearachy levels.